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SUMMARY

The material point method (MPM) developed by Sulsky and colleagues is currently being used to solve
many challenging problems involving large deformations and/or fragementations with some success. In
order to understand the properties of this method, an analysis of the considerable computational properties
of MPM is undertaken in the context of model problems from gas dynamics. The MPM method in the
form used here is shown both theoretically and computationally to have first-order accuracy for a standard
gas dynamics test problem. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The need to solve problems involving large deformations in materials has led to the development
of a number of new computational methods. Examples of such methods are meshfree and particle
methods, for example, as surveyed by Li and Liu [1], one of which is the relatively new material
point method (MPM) of Sulsky et al. [2, 3], which may, perhaps, be described as a quasi-meshless
method. This method (MPM) has evolved from the particle-in-cell (PIC) and FLIP methods [4]
originally developed by Brackbill see [5] and the references within. An interesting discussion
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of some of these methods and important theoretical results are given by Grigoryev et al. [6].
Two important features of MPM are the use of a grid as a scratchpad for calculations, hence
the quasi-meshless characterization and the capability to model solid materials undergoing large
deformation. An important aspect of the MPM method is that it has not yet been subjected to as
much analysis as many of the methods surveyed by Li and Liu [1].

There has been considerable analysis of PIC type methods. One of the fundamental aspects of
PIC methods is a discretization of a material into particles, and the interpolation of information from
particles to grids and vice versa. In MPM, Lagrangian particles (or points) are used to discretize
the volume of the fluid or solid. These material points carry with them the properties such as mass,
velocity, stress, strain and so on. The grid may be viewed as a temporary computational scratch
pad, which can be reconnected at any time when a mesh distortion makes further calculation
more difficult. Material response is governed by continuum mechanics constitutive models, which
generates stress based on both the history and current mechanical states, [2]. The generalized
interpolation material point method (GIMP) [7] provides a general formulation covering MPM
methods. MPM has been used for applications such as the biomechanics of micro-vessels, the
effects of wounding on heart tissue and the properties of foam under large deformation [8]. The
method has also been used extensively in large-scale complex fluid–structure interactions [9, 10],
arising from the modeling of safety studies involving explosions. Given the use of the method on
such important and challenging problems, it is important to understand how accurate the method is.

In this paper, an analysis of the MPM procedure is considered in the context of a shock
propagation problem, using a modified form of the method developed by Kim [11]. This problem
has also been studied by Burgess et al. [12], Sulsky et al. [2], York et al. [13] and very recently
in the context of SPH methods by Brownlee et al. [14]. A comparison between MPM and the
SPH method has been undertaken by Ma et al. [15]. Although MPM is originally designed for
solid mechanics problems, this test problem has the advantage of being sufficiently simple and
well-understood to allow analysis of the method. Furthermore, the problem’s analytical solution
can be used to evaluate the various sources of error in the MPM method. This paper describes the
accuracy and stability properties of the MPM method in a way that also allows these properties
to be extended to other more general situations. A particular focus of the paper is an analysis of
different methods used to project information from particles onto the grid. The errors introduced
when the particles cross grid cells are also studied in some depth. The paper is complementary to
other recent studies of the method [16–19].

2. PROBLEM DESCRIPTION

The model problem used here is that of Sod [20] who used a simple gas dynamics problem to
investigate finite difference schemes for shock propagation type problems. This problem has an
analytical solution and may be used to compare the result of MPM with the analytical solution.
The same problem has often been used as a test problem for PIC and MPM methods [13].

Sod’s gas dynamics problem consists of a shock tube, where a diaphragm is located in the
middle of the tube. Two sides of the diaphragm have different pressures and densities, which make
the fluid flows when the diaphragm is broken. The left side of density is 1 and pressure is also 1.
The right side of density is 0.125 and pressure is 0.1, and the initial velocities of both regions are
zero. At time t=0, the diaphragm is removed, the motion of the compressible and inviscid fluid
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is governed by Euler’s equations, which are,
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where e is the total energy per unit volume, p the pressure, v the unit velocity, � the fluid density
and (x, t)�(0,1)×(0,0.1). The state equation for pressure is

p=(�−1)

(
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)
(2)

where �=1.4 denotes the ratio of specific heat for dry air as a perfect gas. These equations may
be written, e.g. using Equations 14.45–14.47 of [21] in the form given by Sulsky et al. [2] as
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where � denotes the internal energy. The state equation for pressure is then given by:

p=(�−1)�� (5)

The boundary conditions are those commonly used [20].

3. MPM SPATIAL DISCRETIZATION

3.1. Particle basis functions

The original form of the MPM method uses Delta functions for the basis functions associated with
the np particles

�p(x)=�(x−xp)Vp, p=1, . . . ,np (6)

where xp(t) are particle positions which are functions of time t and Vp is a particle volume that
is discussed below. Bardenhagen and Kober [7] use the piecewise constant form instead

�p(x)=
{
1 if x� �p

0 otherwise
(7)

where �p is the interval [xp−h p/2, xp+h p/2] and h p is the particle width. This has the advantage
that the functions form a partition of unity on the interval [a,b]:

np∑
p=1

�p(x)=1 ∀x ∈[a,b] (8)
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For both choices of basis functions, the approximation to the function f (x) in terms of particle
values is then written as

f (x)≈∑
p

f p�p(x) ∀x ∈[a,b] (9)

The particle volumes are then defined by

Vp =
∫

�i
�p(x)dx (10)

where �i is the domain of cell i that contains the particle p. In the case when �p(x) is defined as
by Equation (6) the ‘volume’ of a particle will be defined in Section 5 below.

3.2. Grid basis functions

The continuous representation of a function g(x) using grid data gi on a grid

a= x0<x1< · · ·<xN =b (11)

and where Ii =[xi−1, xi ] and Ii+1=[xi , xi+1] and hi = xi −xi−1 is given by

g(x)=
nv∑
i=1

gi Si (x) (12)

where Si (x) is the piecewise linear basis function with value one at node xi in the mesh and value
zero at all other nodes; often these points are equidistant with an uniform mesh spacing of h.

3.3. Mapping from particles to grid

The mapping from particle values to values at grid points is defined by the convolution of the
linear basis functions or their gradients with the particle basis functions as follows. Let

S̄i p = 1

Vp

∫
�i

Si (x)�p(x)dx (13)

and

Ḡip = 1

Vp

∫
�i

dSi
dx

(x)�p(x)dx (14)

In the case of the standard MPM case when delta functions are used for the particles and linear
basis functions are used for the grid, then [7],

S̄i p = Si (xp) (15)

and

Ḡip = dSi
dx

(xp) (16)

The mapping from particle values to values at grid points is then defined by

f (xi )=
np∑
p=1

f (xp)S̄i p (17)
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4. COMPUTATIONAL METHOD

Given an initial distribution of particles on the domain, the point masses, mp, are defined in terms
of density by:

mp =
∫

�i
�(x)�p(x)dx (18)

A point density average, �p, may also be defined by

�p =mp/Vp (19)

Particle momentum values, Pp, are given by

Pp =
∫

�i
�(x)v(x)�p(x)dx (20)

where �(x) is the continuum body’s mass density and v(x) is the velocity.
The Cauchy stresses are

�p =
∫

�i
�(x)

�p(x)

Vp(x)
dx (21)

where �(x) is continuum bodies initial Cauchy stress. In the most general case, the stress tensor
is given by �=−pI +T , where p is the pressure, T denotes the viscous stress tensor and I is an
identity tensor whose size is the same as the modeling dimension. In a perfect fluid model such
as the gas dynamics problem considered here, the stress at a particle is equal to the pressure:

�p =−pp (22)

4.1. Mesh and particle movement per time step

This subsection is an abbreviated form of the description of the MPM method in [17]. At the start
of a time step, the mass at each grid point, mi , is calculated from the masses of the particles, by
using the lumped mass matrix form of MPM [2]:

mi =
np∑
p=1

S̄i pm p, i=1, . . . ,nv (23)

where nv is the number of nodes. Momentum at a grid node, Pi , is given by

Pi =
n p∑
p=1

S̄i pm pvp, i=1, . . . ,nv (24)

The nodal velocity, vi , is calculated from the mass and the momentum of the node:

vi = Pi
mi

(25)

The force at each node, F int
i , is given by

F int
i =

np∑
p=1

ppḠipVp (26)
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where pp is the particle pressure. The acceleration at a node, ai , is calculated from the force and
the mass at the node:

ai = F int
i

mi
(27)

The nodal velocity at the end of Lagrangian step is calculated using Euler’s method

vn+1
i =vni +ani dt (28)

where ani is the acceleration at time tn . The particle velocity and location are updated using these
new values:

vn+1
p =vnp+

nv∑
i=1

S̄i pa
n
i dt (29)

xn+1
p = xnp+

nv∑
i=1

S̄i pv
n+1
i dt (30)

Remark
If vn+1

p was used to replace the sum in the right side of Equation (30), the time integration method
could be viewed as a first-order Runge–Kutta–Nystrom method [22].

5. APPLICATION TO GAS DYNAMICS

At the start of a time step, the approximate particle volume for particle p can be calculated from
the width of the cell it lies in, h j , and the number of particles in that cell, N j

p , by

Vp = h j

N j
p

(31)

while this is a reasonable approximation for compressible flow, and was first used by Kim [11], it
represents a departure from the standard MPM approach for solid mechanics, in which the volumes
associated with particles are tracked, see [16], for an analysis of this case. The particle’s mass is
calculated from the density and the volume of the particle as

mp =�pVp (32)

The mass at each grid point is calculated from the projection of the particle properties as in (23)
and the momentum at a grid node is given by Equation (24). The nodal velocity is calculated from
the mass and the momentum of the node as given in (25). The force at each node may be written
as the jump on the averaged particle pressures

F int
i = p−

p,i − p+
p,i (33)

where
p−
p,i =

∑
p:xp∈Ii

pp
1

Ni
p

(34)

p+
p,i =

∑
p:xp∈Ii+1

pp
1

Ni+1
p

(35)
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The internal force at a node is thus equal to the averaged pressure drop around that node. The
acceleration at a node is calculated from the force and the mass at the node

ai =
p−
p,i − p+

p,i

mi
(36)

The particle velocity and location are updated using these values by Equations (28)–(30). This
method of force calculation has been developed here as being more appropriate for compressible
gas dynamics as it assumes that the particles within a cell have the same volume. Analysis and
investigation of alternative methods for solid mechanics and different approaches to gas dynamics
are provided by [6, 13, 16].
5.1. Particle energy, density and pressure update

Once the nodal velocities are known as in Equation (29), it is possible to update the velocity
gradient and hence calculate the energy and a density of the particles at the next time step, as
denoted by �n+1

p ,�n+1
p by

�n+1
p =�np− pnp

�np

�vn+1
p

�x
dt (37)

and

�n+1
p =�np

(
1− �vn+1

p

�x
dt

)
(38)

where the velocity gradient of each particle is calculated using nodal velocities and the gradients
of the nodal basis functions by using

�vn+1
p

�x
=

nv∑
i=1

Ḡipv
n+1
i

where Ḡip is defined by equation (14). The pressure update is given by:

pn+1
p =(�−1)�n+1

p �n+1
p +av (39)

The term av is a standard artificial viscosity term which is defined by

anv =

⎧⎪⎨
⎪⎩
C2dx2�

(
�vp

�x

)2

if
�vp

�x
�0

0 otherwise

where C=2.5. This form of artificial viscosity was used by Monaghan and Gingold, and Monaghan
and Pongracic [23, 24] to reduce oscillations in the numerical solution SPH methods. This formula
exploits the property of shock front that the gradient of velocity is less than zero, there. Using the
pressure Equation (5) to substitute for the pressure/density ratio in the energy equation gives:

�n+1
p =�np

(
1−(�−1)

�vn+1
p

�x
dt

)
− av

�np

�vn+1
p

�x
dt (40)
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In the same way the pressure Equation (5) may itself be rewritten as:

pn+1
p =

[
(pnp−an−1

v )

(
1− �vp

�x
dt

)
+anv

](
1−(�−1)

�vn+1
p

�x
dt

)
(41)

5.2. Positivity, overshoots and stability

As density, energy and pressure values are positive, their numerical approximations should also
be positive. From Equations (37)–(38) it may be seen that this occurs for the discrete density and
energy equations under a Courant-like condition:

0�
�vn+1

p

�x
dt�1 (42)

Although this ensures that the values of density and energy remain positive; local extrema may be
caused by the use of the velocity gradient from ‘old’ cell when cell crossing occurs. Suppose that
there are two adjacent particles in different mesh intervals with densities, �p and �p+1. Suppose
further that

�p(tn)<�p+1(tn) (43)

and that the velocity gradients �vp/�x differ in adjacent intervals so that(
1−dt

�vn+1
p (xp)

�x

)
�
(
1−dt

�vn+1
p (xp+1)

�x

)
(44)

then it is possible that one particle will over take the other in magnitude:

�p(tn+1)>�p+1(tn+1) (45)

this may result in a new extremal value. A similar argument may be developed for the creation
of new extrema in energy. In order to prevent this further artificial diffusion is applied in the
case when extrema occur in velocity (vi−1−vi )(vi+1−vi )>0. The new value of velocity is then
calculated by the addition of an artificial viscosity-like term that approximates (h2i /3)(�

2
v/�x2)

gives

vi =vi + vi−1−2vi +vi+1

3
(46)

and the same approach is applied if extrema are detected in density.

5.3. Particle redistribution

Once particles move to an adjacent cell, the changed number of particles in a cell is used to
calculate new particle volume and mass after the density calculation is completed. If there were
too few particles per cell and some of these particles move from one cell to another cell, it is
possible for a cell not to have any particles. This may cause stability problems. To prevent this
situation, care must be taken in the initial assignment of particles, see Section 6.1. The main idea
is to ensure that there are always sufficient number of particles per cell. This may be obtained
by redistributing particles or by ensuring that particles are placed where they will move into cells
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with less particles. It may also be necessary to create new particles in the empty cells with the
particles’ properties obtained by interpolating the particles’ properties in the adjacent cells.

6. GAS DYNAMICS COMPUTATIONAL EXPERIMENTS

6.1. Initial uniform particle distribution

In these experiments the spatial mesh is fixed, and as particles can move from one cell to another
cell, the number of particles in a cell varies, and so does their volume according to Equation (31).
Since we assume that each material point is a part of a perfect compressible gas, changing the
particle’s volume is a reasonable modeling assumption. Initially, same number of particles per a
cell is used. Figures 1(a), (b) are the results after 0.2 s. The initial number of particles in a cell is
eight, the cell size is 0.005 and time step is 0.00025. Each dot represents a material point and a
solid line is the analytical solution.

Figures 1(a), (b) show large errors behind the shock front. The smoothing process described in
Section 5.2 was applied to density and velocity as a remedy for this. Figures 2(a), (b) show the
solution after the smoothing process was applied. The error norm after the smoothing process is
about 67–90% of that when smoothing is not applied.

In investigating the relationship between the error and cell size, number of particles and time
interval, a smaller cell size generated more accurate results. When the number of particles is too
small (1, 2 or 3), the computation was inaccurate or unstable no matter how small the cell size
was. When the number of particles in a cell was between 4 and 8 and a sufficiently small cell size
was used the best results were obtained. In addition it is interesting to see that the smaller cell
size does not reduce the need for a certain number of particles in a cell in order for a stable and
accurate result to be obtained. Smaller time steps generated slightly better results at the cost of
increased calculation times. The conclusion thus is that between 4 and 8 particles should be used
in this situation with this method. Section 6.2 will show that this may be modified based on the
difference of density in various regions.

Figure 3(a) shows the final L2 error norms with a fixed time interval but different cell sizes
and shows that the L2 norm is decreasing as the cell size decreases. The figure also shows that
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Figure 1. (a) Density error and (b) velocity error.
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Figure 2. (a) Density error and (b) velocity error.
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Figure 3. (a) Error vs cell size and (b) error vs CFL number.

the number of particles is not the main factor for a smaller error norm if the number of particles
is not too small. Figure 3(b) shows that for the same cell size but different time steps the error
did not change much for CFL numbers below 0.1. Figure 3(b) shows slightly increasing errors
as the time interval decreases, perhaps due to error buildup over the larger number of steps, but
overall the spatial error dominates the temporal error. In order to investigate stability and choice
of CFL number, two test cases were used. First of all, cell size and the number of particles per
cell were fixed, and time interval is changed. When the cell size was 0.005, the modeling system
was unstable if the time interval was bigger than 0.00057. The meaning of ‘unstable’ is that the
particle’s velocity was so large that the particle left the spatial domain. Table I shows that the
method generates stable results only if the CFL number is smaller than about 0.11–0.12, and
the smoothing process allows a slightly larger CFL number than the non-smoothing process
does.
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Table I. Values of stable time step size.

0.005 0.01 0.015

Cell size (dX) N.S.∗ S∗ N.S. S N.S. S

Max stable time step (dt) 0.00057 0.0006 0.00114 0.00124 0.00171 0.00185
Max stable CFL(dT/dX) 0.114 0.124 0.114 0.124 0.114 0.123

∗NS: non-smoothing process, S: smoothing process applied.
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Figure 4. (a) Density and (b) velocity.

6.2. Alternative particle distribution

Although the smoothing process reduced much of instability of the particles, there are still remaining
spurious oscillations in the solution. Brackbill [25] showed that the ringing instability in the PIC
method was reduced with smaller number of particles, see Section 8. This result suggests using
a smaller number of particles. However, using (2–3 particles) increases error and one particle
in a cell may generate unstable results. This problem is overcome by noting that, based on the
given initial condition, the gas to the right of the diaphragm has a lower density. Hence, particles
are assigned in proportion to the relative density of the gasses. Since the gas on the left side
has normalized density 1 and that on the right has density 0.125, eight particles per a cell are
assigned to the left and one particle to the right. Interestingly, this particle distribution gives a
stable result although the number of particles on the right side is one per cell. During the time
integration process, the left particles move rightwards. As there are enough number of particles
on the left side and these particles move to the right where there is only one particle per cell,
the solution process remains stable as we are constantly introducing particles into the cells on the
right. Figures 4(a), (b) show the results from using fewer particles on the right-hand side of the
diaphram. The Smoothing process of Section 5.2 was also applied. Comparing these images with
Figures 2(a), (b), this approach results in fewer oscillations, but has a similar error norm to the
previous cases. A generalization of this approach is to equally distribute particles with respect
to density.
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7. TIME INTEGRATION ERROR AND GRID CROSSING BY PARTICLES

7.1. Time integration discontinuities arising from grid crossing

The comparative lack of smoothness of the spatial basis grid functions used in the MPM translates
into a lack of smoothness in time when particles cross grid points and then have properties
that are redefined in terms of the basis functions in the next interval. The definition of particle
velocity updates in terms of nodal velocity values means that the higher time derivatives of the
particle velocity are discontinuous when a particle crosses a grid point. This may be illustrated by
considering Equation (28), which is a forward Euler discretization of

v̇p =∑
i
Si (xp)ai (47)

If the point xp(t) is in the interval [xi−1, xi ] then this equation may be written as

v̇p =�i ai−1+(1−�i )ai , �i = xp(t)−xi
xi−1−xi

(48)

whereas if the point xp(t) is in the interval [xi , xi+1] then this equation may be written as

v̇p =�i+1ai +(1−�i+1)ai+1, �i+1= xp(t)−xi+1

xi −xi+1
(49)

The second derivative of vp when the point xp(t) is in the interval [xi−1, xi ] is given by

v̈p =�i ȧi−1+(1−�i )ȧi + ẋ p
ai−1−ai
xi−1−xi

(50)

or if the point xp(t) is in the interval [xi , xi+1] then

v̈p =�i+1ȧi +(1−�i+1)ȧi+1+ ẋ p
ai −ai+1

xi −xi+1
(51)

The jump in the second derivative of particle velocity as the particle crosses the point xi is given by

[v̈+
p − v̈−

p ]xi = ẋ p

[
ai −ai+1

xi −xi+1
− ai−1−ai

xi−1−xi

]
(52)

The local error associated with one step of the forward Euler method applied to Equation (29) is
given by

le= dt21
2

v̈p (53)

This formula does not apply if v̈p is discontinuous with ‘left’ and ‘right’ values denoted by v̈−
p

and v̈+
p , respectively. One standard ODE method for crossing a discontinuity is to march up to it

with one step of size dt1 and one step from it of size dt2. The local error for an Euler time step
in region one may be estimated by

le1≈ dt21
2

v̈−
p (54)
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and the local error for an Euler time step in region two is estimated by

le2≈ dt22
2

v̈+
p (55)

by assuming that the second derivatives may be regarded as constant on a step. It may be shown
by using techniques such as those used by Shampine [26] that the error introduced over one time
step, denoted here by ep+1

p , that crosses the discontinuity is then the sum of these local errors and
the difference between the one- and two-step solutions, i.e.

ep+1
p = le1+ le2+(v̄n+1

p −vn+1
p ) (56)

where vn+1
p is the solution computed using one Euler step of size dt and where v̄n+1

p is the solution
computed using two Euler steps of size dt1 and dt2. The next two sub-sections will show that the
gap between the two Euler solutions (v̄n+1

p −vn+1
p ) is one power of dt less than the local errors

for both velocity and position errors.

7.2. Time integration errors in velocity

Having determined the nature of the discontinuity, it now remains to determine the error introduced
by stepping over it. In both these cases, the discontinuity in the first time derivative of the right-
hand side of Equation (43) (after noting that xp is time dependent) means that the time integration
method accuracy is restricted to first order unless special action is taken [27, p. 64]. It is worth
noting that with a standard p.d.e. method discontinuities in time derivatives do not occur in the
same way as when MPM particles cross cells. In the case when a particle xp lies in Ii and passes
over a mesh cell (Figure 5) then Figure 6 illustrates the different values of spatial position that
may result when the discontinuity is and is not considered.

vn+1
p =vnp+

[
ai−1+

xnp−xi−1

xi −xi−1
(ai −ai−1)

]
dt (57)

X

t

tn

n+1

Xp
n i

X X p
n+1

p
n+1

Figure 5. Mesh crossing diagram.
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Figure 6. L1 norm of mass errors at nodes for different meshes.

Alternatively, the forward Euler method may be applied to march up to the edge of the cell in one
step and then take another step to arrive at the same point. For the first sub step of length dt1 the
velocity is

v̄i =vnp+
[
ai−1+

xnp−xi−1

xi −xi−1
(ai −ai−1)

]
dt1 (58)

For the second sub step

v̄n+1
p = v̄i +[ai +dt1ȧi ]dt2 (59)

where dt=dt1+dt2. Hence the difference in the velocities calculated using the two approaches is
given by

v̄n+1
p −vn+1

p =(ai −ai−1)

[
xi −xnp
xi −xi−1

]
dt2+dt1dt2ȧi (60)

and so may be written as

v̄n+1
p −vn+1

p ≈Cdt2(ai −ai−1)+H.O.T (61)

where C=[xi −xnp/xi −xi−1] and where 0�C�1. For the Euler equations considered here the

values of (ai −ai−1) may be as large as 103. This dictates the use of a time step of the order of
that used in Section 6.‡

‡The reader should note that throughout C will be used as a generic constant whose value may be different each
time it is used.
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7.3. Time integration errors in spatial position

Having determined the nature of the discontinuity, it now remains to determine the error introduced
by stepping over it. In both these cases, the discontinuity in the higher derivative means that the
time integration method accuracy is again restricted to first order. In the case when a particle xp
lies in Ii and passes over a mesh cell then

xn+1
p = xnp+

[
vn+1
i−1 + xnp−xi−1

xi −xi−1
(vn+1

i −vn+1
i−1 )

]
dt (62)

which may be written as

xn+1
p = xnp+

[
vni−1+ xnp−xi−1

xi −xi−1
(vni −vni−1)

]
dt+

[
ani−1+ xnp−xi−1

xi −xi−1
(ani −ani−1)

]
dt2 (63)

As stated above, consider using the forward Euler method to march up to the edge of the cell in
one step and then in another step to step to the same time point. For the first step

xi = xnp+
[
vni−1+ xnp−xi−1

xi −xi−1
(vni −vni−1)

]
dt1+

[
ani−1+

xnp−xi−1

xi −xi−1
(ani −ani−1)

]
dt21 (64)

For the second step

x̄n+1
p = xi +vn+1

i dt2 (65)

and so

x̄n+1
p = xi +vni dt2+ani dtdt2 (66)

where dt=dt1+dt2. Hence the difference between the positions calculated by the two approaches is:

x̄n+1
p −xn+1

p =(vn+1
i −vn+1

i−1 )

[
xi −xnp
xi −xi−1

]
dt2−

[
ani−1+

xnp−xi−1

xi −xi−1
(ani −ani−1)

]
dt1dt2 (67)

Dividing both sides of Equation (67) by (xi −xi−1) gives

x̄n+1
p −xn+1

p

xi −xi−1
≈dt2

(vn+1
i −vn+1

i−1 )

(xi −xi−1)
C− dt1dt2

xi −xi−1

[
ani−1+ xnp−xi−1

xi −xi−1
(ani −ani−1)

]
(68)

where C=[xi −xnp/xi −xi−1] and where 0�C�1.

The term x̄n+1
p −xn+1

p /xi −xi−1 is the spatial relative error in the position. And as the values

of (vn+1
i −vn+1

i−1 ) are O(1) for the case considered here it follows that limiting dt�v/�x<0.1 will
control the relative position error on the step, as also suggested in Section 6.2.

8. SPATIAL ERROR ESTIMATION

In evaluating the spatial error there are three main sources of errors: the mass mapping error
introduced by Equation (23), the momentum mapping error introduced by Equation (24) and the
force mapping error introduced by Equation (26). Before considering these equations it is helpful
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to establish some notations relating to an important result, Theorem 2.3 of Hickernell [28] who
proves that for any function f (x)∈ X p ≡[ f :d f/dx ∈L p([0,1])]∣∣∣∣∣

∫ 1

0
f (y)dy− 1

Np

Np∑
i=1

f (zi )

∣∣∣∣∣�D2(P,Np)

∥∥∥∥d fdx
∥∥∥∥
2

(69)

where

D2(P,Np)=
√√√√ 1

12N 2
p
+ 1

Np

Np∑
i=1

(
zi − 2i−1

2Np

)2

(70)

zi is an ordered set of the points xp ∈[0,1]. Although Hickernell proves the result for more general
norms, the above result is sufficient for this analysis. It is important to translate Hickernell’s result
to the sub-intervals used in the MPM method. The constant D2(P,Np) is unchanged except that
the points (2i−1)/2Np need to be translated to the interval Ii+1. In considering an integral over
a domain of width h, Theorem 2.3 then becomes∣∣∣∣∣∣

1

hi+1

∫ xi+1

xi
f (y)dy− 1

Ni+1
p

Ni+1
p∑

i=1
f (xi )

∣∣∣∣∣∣�D2(P,Ni+1
p )(hi+1)

1/2
∥∥∥∥d fdx

∥∥∥∥
2,hi+1

(71)

where ∥∥∥∥d fdx
∥∥∥∥
2,hi+1

=
[∫ xi+1

xi

(
d f

dx

)2

dx

]1/2
(72)

and where

D2(P,Ni+1
p )=

√√√√ 1

12(Ni+1
p )2

+ 1

Ni+1
p h2

Ni+1
p∑

i=1

(
(hzi +xi )−

(
xi + (2i−1)h

2Ni+1
p

))2

(73)

It should also be noted that from the mean value theorem for integration

(hi+1)
1/2

[∫ xi+1

xi

(
d f

dx

)2

dx

]1/2
=(hi+1)

∣∣∣∣d fdx (	)

∣∣∣∣ (74)

for some 	∈ Ii+1. Hence∣∣∣∣∣∣
∫ xi+1

xi
f (y)dy− hi+1

Ni+1
p

Ni+1
p∑

i=1
f (xi )

∣∣∣∣∣∣�D2(P,Ni+1
p )h2i+1

∣∣∣∣d fdx (	)

∣∣∣∣ (75)

The values of D2(P,Ni+1
p ) clearly depend on the point distribution and thus in turn on the problem

being solved. Considering the worst case of particles negligible distances apart at the end of an
interval it is straightforward to show that

1

2
√
3Ni+1

p
�D2(P,Ni+1

p )� 1√
3

(76)
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This result has a similar form to the results of Grigoryev et al. [6] (as quoted by Brackbill [5])
except that the key difference here lies in the choice of quadrature rule. Vshivkov calculates the
error, �k , in the charge density at node k as computed with the PIC. His result states that

�k�
(

3�2av
2�min

+h
�2av�max
6�3min

∣∣∣∣��

�x

∣∣∣∣
max

)
1

N 2
+ h2

12

∣∣∣∣∣�
2�

�x2

∣∣∣∣∣
max

(77)

where N is the average number of particles in a cell. In the discussion that follows it is convenient
to assume that the meshpoints are evenly spaced, i.e.

h=hi+1=hi (78)

8.1. Ringing instability

It is also important to remark that, as with any quadrature rule, there exist values of f (x) such
that f (x j )=0. For example, if

f (x)=
Ni
p∏

j=1
(x−x j ) (79)

then the integral approximation is zero and the error is the value of the integral. Furthermore, there
are functions that are non-zero at the particle points such as

f (xi )=(−1)i (80)

which in the case of even numbers of mesh points will give a zero contribution to the integral.
The problem is made worse by the fact that the quadrature rule is essentially using a piecewise
constant approximation to function in forming the integral in the most general case. This loss of
information due to quadrature is known as the ‘Ringing Instability’ and is a well-known feature of
particle methods that is attributed to the under-representation of particle data on the grid. Brackbill
[25] and MAcNeice [29] explain this instability in terms of Fourier analysis.

8.2. Mass projection error

The mass error associated with Equation (23) is denoted by Ei
m and is defined by

Ei
m =

∫ xi+1

xi−1

�(x)Si (x)dx−mi (81)

where there are N j
p points in the interval I j . This may be written more explicitly in terms of the

points in each interval, by using Equation (15) and (23), as

Ei
m =

∫ xi

xi−1

�(x)Si (x)dx− h

Ni
p

∑
p:xp∈Ii

Si (xp)�p

+
∫ xi+1

xi
�(x)Si (x)dx− h

Ni+1
p

∑
p:xp∈Ii+1

Si (xp)�p (82)
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The error term is thus composed of two terms each of which is similar to the right side of
Equation (75):

|Ei
m |�D2(P,Ni

p)h
2
∣∣∣∣d(�(x)Si (x))

dx
(	1)

∣∣∣∣+D2(P,Ni+1
p )h2

∣∣∣∣d(�(x)Si (x))

dx
(	2)

∣∣∣∣ (83)

for some 	1∈ Ii and some 	2∈ Ii+1. However, as the first derivative of Si (x) depends on 1/h, this
results in the mass error Ei

m being first order in h. An approximate L1 norm of mass projection
error is calculated by using the trapezoidal quadrature rule, based upon the true error in the mass
at mesh points. The result in Figure 6 shows how the mass projection error grows for different
mesh sizes and is first order of mesh size as expected. The errors grow in time in a way that is
consistent with first time integration using the forward Euler method.

8.3. Momentum projection error

The momentum error associated with Equation (36) is denoted by Ei
P and is given by a

similar expression as the mass error except that terms of the from �(x)Si (x) are replaced with
v(x)�(x)Si (x), i.e.

|Ei
P |�D2(P,Ni

p)h
2
∣∣∣∣d(�(x)v(x)Si (x))

dx
(	1)

∣∣∣∣+D2(P,Ni+1
p )h2

∣∣∣∣d(�(x)v(x)Si (x))

dx
(	2)

∣∣∣∣ (84)

for some 	1∈ Ii and some 	2∈ Ii+1. It follows that the momentum error is also first order in h.
A graph of the momentum projection error is very similar to Figure 6.

8.4. Velocity projection error

The nodal velocity, vi , is calculated from the mass and the momentum of the node as in
Equation (25). The exact projected velocity is given by

v
expro
i = Pexpro

i

mexpro
i

=
∫
Si (x)�(x)v(x)dx∫
Si (x)�(x)dx

(85)

While the division by an integral containing �(x) may be problematic; the method described above
has a number of steps to ensure that at least one particle with mass is in every cell interval.

The error in the velocity projection, Ei
vproj(t), is defined by:

Ei
vproj(t)=v

expro
i −vi (86)

Let v(xi , t) be the exact nodal velocity at t, and define the error from projection in the exact
value as:

Ei
v1(t)=v(xi , t)−v

expro
i (87)

Then the overall error in velocity projection may be split into two parts:

Ei
v(t)=v(xi , t)−vi =Ei

v1(t)+Ei
vproj(t) (88)

Let

�2U

�x2
(x, t)=�(x, t)v(x, t) (89)
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and

�2V

�x2
(x, t)=�(x, t) (90)

Then the exact velocity is defined by:

v(xi , t)=
h

�2U

�x2
(x, t)

h
�2V

�x2
(x, t)

(91)

Using integration by parts, the projection of the velocity satisfies:

v
expro
i =

∫
Si (x)�(x)v(x)dx∫
Si (x)�(x)dx

=
1

h
(U (xi −H, t)−2U (xi , t)+U (xi +H, t))

1

h
(V (xi −H, t)−2V (xi , t)+V (xi +H, t))

Define two projection errors Ei
U (t) and Ei

V (t) by

Ei
U (t)=h

�2U

�x2
(xi , t)−

∫
Si (x)�(x)v(x)dx (92)

where using standard finite difference analysis Ei
U =O(h3)+H.O.T, and

Ei
V (t)=h

�2V

�x2
(xi , t)−

∫
Si (x)�(x)dx (93)

and where Ei
V =O(h3)+H.O.T similarly. The partial projection error Ei

v1(t) is then given by:

Ei
v1(t)=

h
�2U

�x2
(x, t)

h
�2V

�x2
(x, t)

−
∫
Si (x)�(x)v(x)dx∫
Si (x)�(x)dx

= 1∫
Si (x)�(x)dx

(Ei
U −v(xi , t)E

i
V )

As Ei
U and Ei

V are third order in h and
∫
Si (x)�(x)dx is first order in h, it follows that Ei

v1(t) is
second order in h. The second part of the projection error is defined by

Ei
vproj(t)=

∫
Si (x)�(x)v(x)dx∫
Si (x)�(x)dx

− Pi
mi

= 1

mi
(Ei

p(t)−v(xi , t)E
i
m(t))

where

Ei
p(t)=

∫ xi+1

xi−1

�(x)Si (x)v(x)dx− h

Ni
p

∑
p:xp∈Ii

Si (xp)�pvp− h

Ni+1
p

∑
p:xp∈Ii+1

Si (xp)�pvp

Using a Taylor’s series expansion of velocity about xi gives

Ei
p(t)=v(xi , t)E

i
m(t)+vx (xi , t)E

i
vp1(t)+

vxx (xi , t)

2
Ei

vp2(t)+·· ·+ (94)
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where

Ei
vpk =

∫ xi+1

xi−1

Si (x)�(x)(x−xi )
kdx− h

Ni
p

∑
p:xp∈Ii

S̄i p�p(xp−xi )
k

− h

Ni+1
p

∑
p:xp∈Ii+1

S̄i p�p(xp−xi )
k (95)

Therefore

Ei
v(t)=Ei

v1(t)+
1

mi

(
vx (xi , t)E

i
vp1(t)+

vxx (xi , t)

2
Ei

vp2(t)+·· ·
)

(96)

Using Hickernell’s result from Equation (71), gives

|Ei
vpk | � D2(P,Ni

p)h
2
∣∣∣∣d(�(x)Si (x)(x−xi )k)

dx
(	1)

∣∣∣∣
+D2(P,Ni+1

p )h2
∣∣∣∣d(�(x)Si (x)(x−xi )k)

dx
(	2)

∣∣∣∣ (97)

for some 	1∈ Ii and some 	2∈ Ii+1. For the lowest-order term k=1 this is second order.

8.5. Acceleration projection error

We define the projection error in acceleration, Ei
a , is

Ei
a =a(xi , t)−ai (98)

where a(xi , t) is the exact acceleration at node xi at time t . As for the velocity projection error,
the acceleration projection error may be split into two parts:

Ei
a =(a(xi , t)−aexproi )+(aexproi −ai )=Ei

a1(t)+Ei
aproj(t) (99)

where aexproi is the exact nodal acceleration obtained by projecting the exact pressure and density
onto the mesh points, and ai is the calculated nodal acceleration from (30). The error Ei

a1(t) may
be shown to be second order in h using the same approach as in Equations (85)–(94). The second
part of acceleration projection error is:

Ei
aproj(t)=

1

h
(
∫ xi
xi−1

p(x)dx−∫ xi+1
xi

p(x)dx)∫ xi+1
xi−1

�(x)Si (x)dx
− 1

Ni
p

∑
p:xp∈Ii

pp− 1

Ni+1
p

∑
p:xp∈Ii+1

pp (100)

Then

Ei
aproj(t)=

1

mi
(Ei

F (t)−a(xi , t)E
i
m(t)) (101)

where

Ei
F =

(
1

h

∫ xi

xi−1

p(x)dx− 1

Ni
p

∑
p:xp∈Ii

pp

)
+
(

−1

h

∫ xi+1

xi
p(x)dx+ 1

Ni+1
p

∑
p:xp∈Ii+1

pp

)
(102)
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Expanding the values of pressure about xi gives

1

h

∫ xi

xi−1

p(x)dx− 1

Ni
p

∑
p:xp∈Ii

pp = px (xi )

(
xi +xi−1

2
− 1

Ni
p

∑
p:xp∈Ii

x p

)

+ pxx (xi )

2

(∫ xi

xi−1

(x−xi )2

h
dx− h

Ni
p

∑
p:xp∈Ii

(xp−xi )2

h

)

and similarly for the interval [xi , xi+1]. The lowest-order term in the error is then:

Ei
F = px (xi )

(
h− 1

Ni
p

∑
p:xp∈Ii

x p+ 1

Ni+1
p

∑
p:xp∈Ii+1

xp

)
+H.O.T (103)

In order to investigate the order of this term it is necessary to consider the evolution of the points
that contribute to the calculation of acceleration at the point xi at time tn . Let means of particle
positions and velocities be defined by:

x̄ni+1(t)=
1

Ni+1
p

∑
p:xp(tn)∈Ii+1

xp(t) (104)

v̄ni+1(t)=
1

Ni+1
p

∑
p:xp(tn)∈Ii+1

vp(t) (105)

Furthermore, define

dv̄ni
dx

(t)= v̄ni+1(t)− v̄ni+1(t)

x̄ni+1(t)− x̄ni (t)
(106)

From Equations (104), (105) and (107) it follows that

x̄ni+1(tn+1)− x̄ni (tn+1)=
[
1+�t

dv̄ni
dx

(tn)

]
(x̄ni+1(tn)− x̄ni (tn)) (107)

and hence that the gap between the means may be related back to the initial mesh distribution

x̄ni+1(tn+1)− x̄ni (tn+1)=∏
j

[
1+�t

dv̄ni
dx

(t j )

]
(x̄ni+1(t0)− x̄ni (t0)) (108)

Suppose that initially all the points are evenly distributed at time t0 with spacing h p, then

(x̄ni+1(t0)− x̄ni (t0))=h p(N
i+1
p +Ni

p)/2 (109)

where the interval spacing h is connected to the initial particle spacing h p through

h=h p(N
0
p+1) (110)

where N 0
p is the total number of points in every interval at t0. Hence

x̄ni+1(tn+1)− x̄ni (tn+1)=h
∏
j

[
1+�t

dv̄ni
dx

(t j )

][
Ni+1

p +Ni
p

2(N 0
p+1)

]
(111)
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Using the CFL condition as defined by Equation (46) then gives

x̄ni+1(tn+1)− x̄ni (tn+1)=h[1+h CFL K ]N
i+1
p +Ni

p

2(N 0
p+1)

+H.O.T (112)

where

K =∑
j

[
dv̄ni
dx

(t j )

]
(113)

This result shows that the acceleration order may be first order if the local velocity gradients are
‘small’ if particles are rezoned as to be closer to evenly spaced as in Section 5.3.

8.6. Velocity gradient error

The accuracy of the equations used to update energy and density in Section 5.1 depends on the
accuracy of the velocity gradient and the velocity gradient at any particle xp ∈ Ii+1 is defined as:

�v

�x
(xp)= vi+1−vi

xi+1−xi
−
(
xi+1+xi

2
−xp

)
�2v

�x2
(xp)+H.O.T (114)

The velocity gradient error at particles is rewritten as:

E p
VG = Ei+1

v −Ei
v

h
+ �t

h
[Ei+1

a −Ei
a]−

(
xi+1+xi

2
−xp

)
�2v

�x2
(xp) (115)

Thus, the velocity gradient error depends on the first-order interpolation error.

9. COMBINING THE ERROR ESTIMATE RESULTS

The density errors at T =0.2 in the apprpoximate L1-Norm and L2-Norm for different mesh sizes
are shown in Table II. We are using same CFL as in Section 6 and the initial number of particles
per cell is also eight throughout. The numbers in this table indicate that the density error is order
of h in the approximate L1-norm and order of h1/2 in the approximate L2-norm. To understand
the orders of these norms, a detailed inspection of the order of accuracy in each part of the spatial
domain was made. In the regions around the contact discontinuity and the shock, the maximum

Table II. Density error at T =0.2 in L1-norm and L2-norm and pointwise
maximum error at mesh points.

h L1-norm L2-norm Max. density err. at mesh pts

0.02 0.00161 0.02484 0.1051
0.01 0.00831 0.01587 0.0812
0.005 0.00434 0.01046 0.1139
0.0025 0.00231 0.00759 0.1063
0.00125 0.00136 0.00626 0.1002
0.000625 0.00110 0.00619 0.0989
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Figure 7. L1-norm of density errors over time for different meshes.

pointwise error does not decrease but the interval over which it occurs is reduced with the mesh
spacing h. The approximate L1-norm is h|Emax| while the approximate L2-norm is

√
h|Emax|,

thus, giving rise to the observed orders of convergence. Figure 7 shows the evolution in time of
the L1-norm of the density error for different mesh sizes.

10. SUMMARY

In this paper, the accuracy properties of a variant of the MPM are investigated in depth on a
well-known test problem in one space dimension. The analysis leads to the same conclusion that
the method is order one half to first order in accuracy for a sufficiently small CFL number. The
analysis also shows that this accuracy depends on a sufficiently well-behaved point distribution.
This point distribution can be verified computationally in a straightforward manner. Computational
experiments have been used to show that the observed experiments match the computed experi-
ments. The importance of this analysis is that it provides a way to make a more formal assessment
of many of the errors in MPM type methods. This in turn makes it possible to start to consider an
analysis of higher space dimensional MPM.
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